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6D OBJECT POSE ESTIMATION

1 Task Definition: Training Free, RGB-Only, and CAD Model
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6D OBJECT POSE ESTIMATION

1 Task Definition: Training Free, RGB-Only, and CAD Model

o Training-free pipelines offer adaptability to unseen objects

o Model-based 6D localization estimates object pose from a 3D CAD model
and an RGB image
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o MASt3R provides dense and stable
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Pos3R

Pos3R: Training-Free and Fast — Render, Match, Fit
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CAD model forty templates
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test segment 2D-2D correspondence coordinate map 6-DoF Pose

1) rendering
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2) image matching
>

3) PnP-RANSAC
>
(sec. 3.2.3)

(sec. 3.2.2)




Pos3R

Step 1: Template Rendering
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forty templates

e fight base template, covering essential orientations

e for each, five in-plane (axial) rotations are generated around the
camera’s principal axis.



Pos3R

Step 2: Image Matching
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test segment®

2D-2D correspondence
* provided by CNOS (Cnos: A strong baseline for cad-based novel object segmentation)

e MIASt3R produces dense 2D correspondences between test segment
and every template

e Similarity is computed by summing feature similarities across
correspondences



Pos3R

Step 3: Pose Fitting
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3) PnP-RANSAC
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2D-2D correspondetnce

coordinate map

6-DoF

Pose

e The template with the highest score is selected

e 3D coordinate map provides 2D-3D matches for PnP to estimate pose



EXPERIMENTS

Performance Comparison on the BOP Challenge

m Coarse Pose Estimation

Mean AR score

MegaPose Gigapose FoundPose Pos3R

e Pos3R outperforms other methods in coarse pose estimations



EXPERIMENTS

Performance Comparison on the BOP Challenge

m Coarse Pose Estimation m \With Pose Estimation
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MegaPose Gigapose FoundPose Pos3R

e Pos3R outperforms other methods in coarse pose estimations

e With pose refiner provided by MegaPose, Pos3R remains competitive



EXPERIMENTS
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e Pos3R is robust to crowding,
lighting changes, and texture-
less objects

e [imitation: heavy occlusion (X)
poses a challenge

blue indicates ground truth; indicates the estimate
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I. Unseen Object Pose Estimation

QO Task Definition: Training Free, RGB, and CAD Model

o Training-free pipelines offer adaptability to unseen objects

o Model-based 6D localization estimates object pose from a
3D CAD model and an RGB image

Il. Why Use a 3D Foundation Model?

Q Motivation

o 2D foundation models (e.g., DINOv2) have been shown to be
effective at training-free pose estimation, but are not consistent
under significant 3D transformations

o 3D foundation models (e.g., MASt3R) predict 3D-consistent
features, which we show to be useful for pose estimation

QO Correspondence Matching Quality
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o DINOV2 produces inconsistent matches under out-of-plane
rotations since it was not trained under these transformations
o MASt3R provides dense and stable correspondences
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Q Pos3R: Training-Free and Fast — Render, Match, Fit
o Step 1: Template Rendering

forty templates
CAD Ll

« Eight base template, covering essential orientations

« For each, five in-plane (axial) rotations are generated around the
camera’s principal axis.

o Step 2: Image Matching

2) image matching
B e

test segment* 2D-2D correspondence
* provided by CNOS (Cnos: A strong baseline for cad-based novel object segmentation)

* MASt3R produces dense 2D correspondences between test
segment and every template

« Similarity is computed by summing feature similarities
across correspondences

o Step 3: Pose Fitting

3) PnP-RANSAC
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2D-2D correspondence  coordinate map 6-DoF Pose

* The template with the highest score is selected
« 3D coordinate map provides 2D-3D matches for PnP to estimate pose
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IV. Experiments

Q Performance Comparison on the BOP Challenge
Coarse Pose Estimation M With Pose Estimation
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» Pos3R outperforms other methods in coarse pose estimations
« With pose refiner provided by MegaPose, Pos3R remains competitive

QO Qualitative Results of 6D Pose Estimates
blue indicates ground truth; indicates the estimate

« Limitation: heavy occlusion (X) poses a challenge

PROJECT PAGE

Paper, code, and datasets



THANK YOU!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

